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Abstract

Research on ethnic politics and political violence has benefited substantially from the

growing availability of cross-national, geo-coded data on ethnic settlement patterns. How-

ever, because existing datasets represent ethnic homelands using aggregate polygon features,

they lack information on ethnic compositions at the local level. Addressing this gap, this

article introduces the Spatially Interpolated Data on Ethnicity (SIDE) dataset, a collection

of 253 near-continuous maps of local ethno-linguistic, religious, and ethno-religious settle-

ment patterns in 47 low- and middle-income countries. We create these data using spatial

interpolation and machine learning methods to generalize the ethnicity-related information

in the geo-coded Demographic and Health Surveys (DHS). For each DHS survey we provide

the ethnic, religious, and ethno-religious compositions of cells on a raster that covers the

respective countries at a resolution of 30 arc-seconds. The resulting data are optimized for

use with geographic information systems (GIS) software. Comparisons of SIDE with exist-

ing categorical datasets and district-level census data from Uganda and Senegal are used

to assess the data’s accuracy. Finally, we use the new data to study the effects of local

polarization between politically relevant ethnic groups, finding a positive effect on the risk

of local violence such as riots and protests. However, local ethno-political polarization is not

statistically associated with violent events pertaining to larger-scale processes such as civil

wars.
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Introduction and motivation

Spatially disaggregated data are increasingly important for the study of ethnic politics and polit-

ical violence. Sub-national data on ethnicity allow investigating how ethnic settlement patterns

influence the likelihood (Weidmann, 2009) and location (Buhaug & Rød, 2006) of civil wars,

the occurrence of electoral violence (Wilkinson, 2004), and the prevalence of communal conflict

(Fjelde & Østby, 2014). Moreover, combining spatial data on the location of ethnic communities

with geo-coded covariates enables the investigation of important sub-national determinants of

political violence, such as intergroup economic inequalities (Cederman, Weidmann & Bormann,

2015), petroleum production (Asal et al., 2016), and climate variability (Fjelde & von Uexkull,

2012).

Many of these research designs are made possible by datasets that offer geo-coded infor-

mation on ethnic settlement patterns for a large number of countries. In particular the GREG

(Weidmann, Rød & Cederman, 2010) and GeoEPR (Wucherpfennig et al., 2011) projects provide

data on ethnic settlement patterns across the globe in the form of geo-referenced polygon fea-

tures.1 While extremely valuable, these datasets exhibit a key shortcoming: They are ill-suited

for capturing local ethnic diversity. The polygon-based coding of ethnic settlement patterns

adopted by these datasets is only adequate where ethnic groups are spatially segregated. Local

ethnic diversity is, however, a common phenomenon and ethnically segmented countries rarely

feature complete segregation. Polygon-based datasets, even when letting polygons overlap, do

not capture such local ethnic diversity due to their categorical nature.

This limitation entails two important caveats for applied research: First, ignoring local ethnic

diversity can be problematic when settlement polygons are used to estimate group-level covari-

ates. Specifically, if group members are not distributed exclusively and uniformly within ‘their’

polygon, estimates of group characteristics obtained via spatial operations may be associated

with considerable error. Second, polygon-encoded ethnic settlement patterns all but prohibit

investigating the consequences of local ethnic diversity.

We argue that redressing these issues requires the use of ethnic settlement data that reflect

local ethnic mixing. Because geographically detailed ethnic census data are rare, relying on

official statistics is an impractical strategy for most conflict-related research projects. As an

alternative, this article introduces the SIDE – Spatially Interpolated Data on Ethnicity – dataset.

With a total of 253 maps, SIDE provides high-resolution geo-referenced information on local

1See also the Ethnologue Atlas (Global Mapping International & SIL International, 2015) and Murdock’s
(Murdock, 1967; Nunn & Wantchekon, 2011) map of ethnic groups in Africa.
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Figure 1. Ethnic maps contained in SIDE.
Country borders from Weidmann & Gleditsch (2010).

ethnic (i.e. ethno-linguistic, religious, and ethno-religious) population shares for 47 low- and

middle-income countries across the globe. SIDE consists of raster data that encode estimates

of local ethnic compositions at a resolution of 0.0083 degrees (ca. 1km at the equator). Thus,

when combined with suitable population data, SIDE

i permits constructing maps of ethnic groups’ settlement patterns that explicitly account for

local variation in groups’ population shares,

ii allows calculating the extent and nature of local ethnic diversity for arbitrary spatial units,

iii facilitates visualization.

All data is available at https://icr.ethz.ch/data/side, or via the sidedata R package.2

The key innovation underlying SIDE is that it is estimated from geo-coded survey data via

spatial interpolation methods. Specifically, SIDE is a statistical generalization of the ethnic

information contained in the DHS data (DHS, 2015). Many DHS surveys are geo-coded, thus

providing a set of spatial sampling points containing local ethnic composition estimates. We use

methods from geo-statistics and machine learning to estimate the ethnic composition of areas

in between these sampling points, thus producing a continuous map of ethnic compositions for

each surveyed country. We also demonstrate that tuning spatial interpolation models through

machine learning strategies is an effective strategy for generalizing sparse, geo-coded survey data

to locations not included in the original sample.

2https://github.com/carl-mc/sidedata
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This article is structured as follows. The next Section provides an overview of the DHS data

underlying SIDE. We then outline our spatial interpolation procedure, followed by a presentation

of the newly derived data. We evaluate the data’s accuracy using information from GeoEPR,

as well as district-level census statistics from Uganda and Senegal. Finally, we discuss SIDE’s

limitations, and offer an illustrative example of its use by exploring the violent effects of local

polarization of politically mobilized ethnic groups.

The DHS data

The information used for estimating the SIDE data are the ethno-linguistic and religious iden-

tities of respondents enumerated in the Demographic and Health Surveys (DHS, 2015). The

DHS is a demographics- and health-related survey that has been conducted regularly and in a

growing number of countries since the 1980s. Beyond its primary focus, the survey also collects

basic demographic information such as respondents’ ethnicity. About 50% of all DHS rounds

are geocoded, of which 119 include items on ethno-linguistic (74 surveys in 31 countries) and/or

religious identities (114 surveys in countries in 45 countries). Combining the two ethnic iden-

tifiers, we can construct ethno-religious identities in 67 surveys (29 countries). An overview of

the surveys used for generating SIDE maps is given in Figure 1 in the Online appendix.

In total, the DHS provides geocoded information on the ethnic identities of 1.83 million

respondents. For the DHS sampling procedure, each country is divided into sub-regions out of

which primary sampling units (PSU) are drawn with a probability proportional to their popula-

tion (see Figure 2). Households are then sampled at random in each PSU (USAID, 2012). This

procedure ensures that the DHS is representative on the national, subnational, and – on average

– PSU-level. We exploit this fact by treating each PSU (also called cluster or point hereafter) as

a geographic point associated with a certain ethnic composition. Beyond the PSU-level sampling

error introduced by the relatively small size of local samples (10-60 respondents/PSU), the data

provider randomly displaced the geocodes associated with the clusters by up to 10 km in rural

and 2 km in urban areas to mitigate privacy concerns (Burgert et al., 2013). This displacement

places a natural upper limit on the spatial precision of the SIDE data.

To limit the computational costs of the interpolation procedure discussed below, we only

predict settlement patterns for ethnic groups that amount to at least 0.5% of a country’s pop-

ulation. All other ethnic groups are added to those labelled ‘others’ by the DHS.3 For most

3To deal with the much more numerous ethno-religious groups, respondents of an ethno-linguistic group have
been assigned the religious ‘mixed’ category if (1) their religious group constitutes less than 5% of the total
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Figure 2. Geocoded DHS clusters (2011) and local population counts (2000) in Uganda.
Data: USAID (2012) and CIESIN et al. (2011)

countries, multiple survey rounds from different years are available. These rounds vary with

regard to the number of respondents, clusters, and enumerated ethnic groups.4 We therefore

conduct separate estimation and prediction runs for each survey and provide separate maps for

each survey round.

Methods

This section provides a brief overview of the spatial interpolation procedure we employ to gen-

erate the SIDE data. For a detailed discussion, we refer the reader to the Online appendix.

Interpolating compositional data

The methodological challenge we face when generating the SIDE data is the following: Can

we infer the ethnic composition at any location within a country given information on ethnic

population and less than 20% in the respective ethno-linguistic group, or (2) if their ethnic group is smaller than
5% of the total population and their religious group makes up less than 50% of their ethno-linguistic group.

4See the Online appendix.
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population shares for a finite sample of points? This task is a variant of spatial interpolation,

which refers to the mapping of data sampled at discrete points onto a smooth surface (Mitas

& Mitasova, 1999). In the 2-dimensional case, spatial interpolation pursues the following goal:

Given a sample of points si, i = 1, 2, . . . , N , each associated with a coordinate pair (xi, yi)

and a measured outcome value zi, find a model that provides a prediction ẑ0 for some target

location s0.

Most spatial interpolation methods are designed for continuous and unbounded response

data. In this application, however, we are interested in estimating compositions. Modeling

compositions is challenging, since they are bounded by zero and one, and must sum up to unity.

To address this issue, we pre-process the compositions at each sample point by applying the

additive log-ratio transform (Aitchison, 1986: 93). The transform maps a vector of compositions

of length G, [zi1, zi2, . . . , ziG], onto a vector of log-ratios of length G − 1, [z′i1, z
′
i2, . . . , z

′
i(G−1)],

by dividing each of the first G− 1 compositions by the final composition and taking the natural

logarithm, i.e.

z′ij =

[
ln

(
zij
ziG

)]
. (1)

Because the transformed z′i values are unbounded, we may now perform all estimation and

prediction tasks on these individual log-ratios without worrying about the compositional nature

of the data. The final output data are then generated by applying the inverse log-ratio transform

to the vector of separately predicted log-ratios. This guarantees that the resulting values sum

to one.5

Interpolation

We use a three-step approach to generate a prediction ẑ0 for some target location s0:

i Sample selection: We employ a local modeling approach for the interpolation task (cf.

Lloyd, 2010). Thus, instead of generating predictions from a single global model fitted to all

available data points from a given survey in a given country, we estimate a local model using

only data points that are spatially proximate to s0. We create local samples by selecting

all observations that are either within distance D of the target point s0, or belong to its K

nearest neighbors.

ii Modelling: We apply two types of models to generate predictions for a target point given

5One possible alternative to this log-ratio approach is to interpolate the compositional data directly using
Kriging. However, Kriging has proven computationally too expensive for the task at hand, see Section 2.3.3 of
the Online appendix.
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its local sample. The first is the exponential distance decay (EDD) method. The EDD

method assigns a given target point a weighted average of the response values of all other

points in the (local) sample (Smith, 2016). Weights are constructed using an exponential

distance decay function that reduces the influence of sample points that are further away

from the target point. The second method we apply is the Thin Plate Spline (TPS, see

Lloyd, 2010: 158). The TPS is a smoothing spline that is used to fit a smooth surface to a

sample of spatial points associated with a continuous outcome variable.

iii Model mixing and prediction: We rely on both the EDD and the TPS methods because

they have complementary properties. The EDD method is exceptionally robust against

overfitting, whereas the TPS is able to recover complex response surfaces. To leverage

this complementarity, we generate predictions using both modeling approaches, and then

use a weighted average of the two as the final prediction. The weights used for averaging

correspond to each model’s out-of-sample predictive performance, the estimation of which is

discussed below.

Model tuning

The prediction approach outlined in the previous subsection involves a number of ‘tuning’ pa-

rameters that cannot be estimated directly during model fitting. These include the K and D

parameters determining the size of local samples, the decay parameter determining the EDD

weights, as well as a couple of parameters associated with the log-ratio transformation. We

determine these parameters using a leave-one-out cross-validation (LOOCV) strategy on a sub-

sample of the input point data. More precisely, for each of the two modeling approaches, we

choose the set of parameters that maximize the model’s out-of-sample predictive performance,

as measured via LOOCV. Because sweeping the parameter space entirely is associated with pro-

hibitively high computational costs, we employ the genetic optimization algorithm implemented

by Mebane & Sekhon (2011) to determine appropriate tuning parameters.

Prediction

Finally, we use the tuned models to generate near-continuous maps of each country’s ethnic

composition at the local level. To this end, we divide each country into raster cells, choosing a

resolution of 0.0083 decimal degrees (ca. 1km at the equator).6 After predicting the two maps

6We choose this resolution in order to facilitate the combination of SIDE with the GRUMP population counts
(CIESIN et al., 2011).
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of ethnic compositions on the basis of the EDD and TPS estimators, we mix the predictions for

each point according to group-specific model fits of the optimized models.

Estimation results

As anticipated, we find that combining the EDD and TPS predictions consistently improves

predictive performance. Moreover, we find that our models’ predictive performance follows a

number of expected regularities (see the Online appendix). First, unsurprisingly, we are typically

better at predicting ethnic settlement patterns in countries featuring fewer ethnic groups, and

covered by a higher density of DHS sampling units. Next, we appear to be slightly worse at

predicting ethno-linguistic settlement patterns than at predicting ethno-religious and religious

settlement patterns. This difference is likely driven by higher levels of spatial segregation among

religious groups in many of the sampled countries. Finally, we find that model fit does not appear

to be affected by the average number of DHS respondents per cluster, or the total number of

respondents of a survey.

A look at the data

The SIDE data are organized as a collection of geo-coded raster grids with a resolution of 0.0083

decimal degrees. This format permits extracting the estimated ethno-linguistic, religious, and

ethno-religious composition of any point in a given country. As an example, Figure 3 shows the

estimated ethno-religious composition of Ibadan in Nigeria in 2013. According to SIDE, in 2013,

Ibadan was composed of approximately 45% Yoruba Christians, 40% Yoruba Muslims, and a

range of smaller ethno-religious groups.

SIDE can also be easily combined with spatial population data, in particular the GRUMP

data (CIESIN et al., 2011), which adhere to the same raster resolution as SIDE. As an illustra-

tion, Figure 4 displays the GRUMP population data for Nigeria in 2000, the SIDE estimate of

the Yoruba settlement pattern in 2013, and the combined estimate of the absolute distribution

of Yorubas in Nigeria. Combining SIDE with spatial population data also permits calculat-

ing measures of ethnic diversity for arbitrary spatial units. Figure 5, for instance, plots the

ethno-linguistic, religious, and ethno-religious fractionalization in Nigerian districts.
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Figure 3. Point prediction: ethno-religious composition of Ibadan, Nigeria.

Figure 4. Constructing local ethnic population counts.
The Yoruba population of each grid cell is computed as the product of its population count (CIESIN et al., 2011)

and its Yoruba share from the SIDE data.

Figure 5. District-level ethno-linguistic, religious, and ethno-religious fractionalization in Nige-
ria.
Calculated based on SIDE, GRUMP (CIESIN et al., 2011), GAUL district borders (FAO, 2014), and the frac-

tionalization formula in Alesina et al. (2003).
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Assessing the quality of SIDE

Our strategy for assessing the accuracy of SIDE is twofold. First, we assess the data’s face

validity by comparing them with existing polygon-encoded data on ethnic settlement patterns.

Second, we use district-level census data from Uganda and Senegal to conduct a systematic test

of the accuracy of SIDE.

Comparison with categorical maps

In the following, we compare the SIDE data for Sub-Saharan Africa with the polygon data pro-

vided by the GeoEPR dataset (Wucherpfennig et al., 2011). To this end, we first match the eth-

nic groups enumerated in SIDE with those coded by GeoEPR.7 For each SIDE-GeoEPR match,

we calculate two quantities: (1) the proportion of the population within a group’s GeoEPR

polygon that SIDE codes as being part of that group, and (2) the proportion of the SIDE group-

population located within the GeoEPR polygon. Figure 6 plots these two measures across all

104 matched groups. The upper-right quadrant of the plot thus contains those groups with

the greatest overlap of the two data sources. It contains a significant share of groups (e.g. the

Langi/Acholi of Uganda). However, those quadrants where there is less overlap between the

two data sets are also populated: The lower-right corner of the plot contains groups for which

the SIDE settlement pattern is contained within the GeoEPR polygon, but the latter also hosts

a non-trivial number of individuals of other ethnicities. Conversely, the upper-left quadrant of

the plot contains groups for which the GeoEPR polygon is populated almost exclusively by the

respective SIDE group, but according to SIDE, the group’s settlement area extends beyond its

GeoEPR polygon. Finally, a few groups are located in the lower-left corner of the plot, where

the SIDE and GeoEPR data exhibit little overlap.

To examine this variation in more detail, we select six representative groups from Figure 6

and map the respective SIDE and GeoEPR data in Figure 7. Visual inspection suggests that,

with the notable exception of the Tuareg in Mali, the SIDE estimates overlap heavily with the

respective GeoEPR polygons, indicating that the two datasets convey the same underlying signal.

The variation exhibited in Figure 6 originates primarily from cases like Ghana’s Ewe, where the

SIDE settlement area ‘spills over’ the respective GeoEPR polygon, or the ‘Other Akan’ group

in the Ivory Coast, where GeoEPR and SIDE essentially agree, but where the group represents

7For each country, we match the most recent SIDE data. Groups are matched primarily on the basis of
equivalent names; in addition, we consulted online sources to match cases where a single EPR group corresponds
to several SIDE groups.
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less than 100% of the local population. This pattern is precisely what we would expect if SIDE

indeed constitutes an improvement over the GeoEPR data: The two datasets agree on the

general location of groups, but the SIDE data suggest that ethnic settlement patterns are not

as homogeneous or segregated as polygon data would suggest.

Finally, the idiosyncratic Tuareg case serves to highlight a risk coming with the SIDE data.

As illustrated in Figure 7, the 2013 SIDE data for Mali fail to capture the Tuareg settlements

because the respective DHS survey does not cover the respective area, which was controlled by

insurgents at that time. We note, however, that we have not found any other case where a lack

of DHS sampling points has led to similarly drastic errors in the SIDE data.

Figure 6. Comparison of SIDE with GeoEPR for Sub-Saharan African ethnic groups contained
in both datasets.

Comparison with Ugandan and Senegalese census data

In a next step, we compare the SIDE data to district-level census statistics from Uganda (2002)

and Senegal (1988 and 2002).8 To this end, we aggregate the population-weighted ethno-

linguistic proportions from SIDE to second-level administrative units.9 Next, we match the

ethno-linguistic groups enumerated in the censuses to those of the SIDE data. The definitions

8For the comparison, we used the 2010 SIDE data for Uganda, and the 1992/2005 maps for Senegal. Census
data were obtained from the Minnesota Population Center (2015)

9Population data were obtained from CIESIN et al. (2011), and administrative boundaries from FAO (2014).
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of ethno-linguistic groups differ at times and lead to unavoidable inconsistencies in the match-

ing.10 The results reported below are therefore conservative estimates of SIDE’s accuracy.

Comparing the SIDE estimates for Uganda with the census, we find that SIDE explains

81.4% of district-level variation in ethno-linguistic group sizes.11 In Senegal, SIDE explains

96.1% (1988 census) and 97.8% (2002 census) of district-level variation. The lower accuracy of

SIDE in Uganda is due to the country’s greater number of ethno-linguistic groups and districts.

The mismatch of the ‘others’ category between SIDE and the census introduces additional error

(see Figure 8a).

Figure 8 illustrates that SIDE is most accurate for demographically large groups, such as

the Acholi and Baganda in Uganda, and the Poular and Serer in Senegal.12 In each of these

cases, the SIDE estimates account for between 75% and 96% of the district-level variation in

group-sizes. In contrast, SIDE performs poorly on the ‘Other’ category, primarily because the

group’s definition in the DHS and the Ugandan census do not coincide.

The census data also permit evaluating how SIDE compares to a district-level aggregation

of the raw DHS data from 2010. Performing this comparison for Uganda, we first note that the

sparseness of DHS PSUs leads to missing values for 47 of the country’s 162 districts. Naturally,

the near-continuous SIDE data avoid this issue. For the remaining 115 districts, the aggregated

DHS data perform worse than the SIDE data, with 78.0% vs. 81.4% of district-level variation

in the census data explained. This difference likely originates in that SIDE makes use of out-of-

district information to predict local ethnic compositions.

In sum, we highlight two qualities of SIDE: First, SIDE captures considerable local variation

in ethnic settlement patterns that polygon-based data cannot reflect. Second, the SIDE provides

reasonably accurate estimates of true, local-level ethnic group proportions as enumerated in

census data.

10For instance, we match those groups present in the censuses, but not in the SIDE data, to the SIDE category
of ‘others’.

11This number is derived from averaging the ethnic composition explained at the district-level: 1 −∑D
d=0

(∑G
g=0

(zd,g−ẑd,g)2

(zd,g−z̄g)2

)
∗ 1

D
, where d indexes districts, g ethno-linguistic groups in district d of size zd,g.

12For a full comparison of all groups see the Online appendix.
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Figure 7. Comparison of SIDE estimates with GeoEPR polygons for selected ethnic groups.
Lines indicate GeoEPR polygons; points indicate locations of DHS PSUs.
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(a) Comparison Uganda: SIDE 2010 and Census 2002

(b) Comparison Senegal: SIDE 2005 and Census 2002

Figure 8. Comparison of SIDE data with ground truth census data from Uganda and Senegal.
Fits are identical to the R2 of a regression of the census data on the SIDE predictions with an intercept of 0 and

a slope of 1.
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Limitations

SIDE exhibits important limitations. These originate primarily from the characteristics of the

DHS data that SIDE is based upon. First, DHS sampling may be not always be representative

due to social phenomena, such as political violence. We test this possibility in the Online

appendix but find only very weak evidence for undersampling in areas that experienced conflict

in the year prior to a survey. However, we cannot conclude that sampling is always unbiased.

To enable users of SIDE to single out potentially problematic cases, we provide the convex hull

of DHS sampling clusters underlying each SIDE map. Second, even though for many countries

SIDE covers multiple years, we caution against relying on this temporal variation for inferential

purposes. Since DHS sampling units and ethnic groups definitions vary over time, a substantial

share of intertemporal variance in the SIDE data is random noise. Third, although the SIDE data

are provided as high-resolution rasters, very local variation in the data may not be meaningful.

This depends on (1) the local density of DHS clusters and (2) their random displacement of

up to 2km (10km) in urban (rural) areas. Although enhancing the precision of SIDE may be

possible by incorporating additional covariates during estimation, we refrain from doing so to

avoid potential endogeneity issues in subsequent applications of the data.

Given these limitations, we encourage the use of SIDE for cross-national analyses that require

consistent, cross-national data on local ethnic diversity, rather than within-country studies that

call for high-precision data on ethnic demographies.

The effect of ethno-political polarization on local violence

By offering high resolution geographical data on ethnic compositions, SIDE contributes to spa-

tially disaggregated conflict research (Cederman & Gleditsch, 2009). In particular and as ex-

plored in the following, the SIDE data adds an explicitly local dimension to the literature on

the link between ethnic polarization and political violence (Montalvo & Reynal-Querol, 2005;

Wilkinson, 2004).

The main theoretical argument to explain the impact of ethnic polarization on violent con-

flict focuses on increased inter-ethnic competition for political power and economic resources.

However, not all ethnic groups are politically mobilized in a uniform manner – some are politi-

cally irrelevant, while others form coalitions (Vogt et al., 2015). We therefore expect the degree

of polarization between politically relevant ethnic groups13 to have a greater effect on conflict

13A politically relevant group is either (1) politically mobilized at the national level or (2) discriminated by
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risk than pure ethnic polarization. Furthermore, local ethno-political polarization is unlikely to

have a uniform impact across all types of political violence. Rather, we hypothesize that local

ethno-political polarization increases the risk of local conflict, such as riots, militia violence,

and one-sided violence (e.g. Wilkinson, 2004). We do not expect a strong association between

local polarization and the occurrence of civil-war related events which are most likely related to

macro-cleavages.

H1: Local polarization between politically relevant ethnic groups increases the risk of

local conflict.

H2: Local polarization between politically relevant ethnic groups does not increase the

risk of civil war at the local level.

Our empirical strategy for assessing the impact of local ethno-political polarization on vio-

lence consists of the following four elements (see Online appendix 5.1 for a detailed discussion):

1. The unit of analysis is the district-year in 22 African countries.14

2. The dependent variable is a dummy (0/100), indicating whether a district-year saw an

event encoded in the SCAD (Salehyan et al., 2012) or ACLED (Raleigh et al., 2010)

datasets. Events are recoded into the following categories: (1) riots/demonstrations, (2)

militia violence, (3) one-sided violence, and (4) civil war events.

3. The main independent variable is the ethno-political polarization index of a district-year.

It is calculated on the basis of the most recent SIDE map matched to the EPR-ETH data

that encode the political relevance of ethnic groups (Vogt et al., 2015). We add a vector

of control variables and spatio-temporal lags.

4. Our empirical model consists in a linear probability model with country-year fixed-effects

so that all variation constant within country-years is taken account for.

The results partly confirm our initial expectations (see Table I). The two indicators of riots

and demonstrations from SCAD and ACLED are robustly associated with districts’ degree of

ethno-political polarization. Substantively, a one standard-deviation rise in a district’s ethno-

political polarization increases the probability of it experiencing a riot/demonstration in a given

year by between .53 (SCAD) and .69 (ACLED) percentage points, with the average probability

the state (Vogt et al., 2015).
14These are all countries covered by the ethno-linguistic maps in SIDE from 1990 to 2013, with the exception

of Burkina Faso which has no “politically relevant ethnic groups” according to EPR-ETH.
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being 2.4% and 5.8%, respectively. The equivalent effect on one-sided violence is an imprecisely

estimated increase of .5 percentage points that compares to an average probability of 7.8%.

Consistent with the argument that larger-scale political violence is not related to local dy-

namics in a mechanical manner, the occurrence of civil war- and militia-related events is not

significantly associated with local ethno-political polarization.

These results are robust to a number of alternative specifications (see Online appendix 5.2).

In particular, the degree of pure ethnic polarization does not drive the pattern. Also, the results

are not caused by a single country with many and/or small districts. The described patterns

also hold if districts (partly) outside the convex hull of DHS samples are excluded from the

analysis to account for potential bias of the SIDE data.

Table I. District-level ethno-political polarization & violence, linear probability models.

Dependent variable:

Riot/demo Militia Riot/demo One-sided Civil war
scad scad acled acled acled

(1) (2) (3) (4) (5)

Ethno-pol. polar. 1.66∗∗ 0.41 2.16∗∗ 1.58† 0.39
(0.45) (0.43) (0.67) (0.93) (0.96)

Population (log) 1.26∗∗ 0.50∗∗ 2.40∗∗ 1.72∗∗ 1.36∗∗

(0.19) (0.15) (0.29) (0.33) (0.35)

Urban pop. (%) 0.05∗∗ 0.02∗∗ 0.10∗∗ 0.08∗∗ 0.09∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Area (log) −0.28∗ 0.28∗ −0.25 1.03∗∗ 1.59∗∗

(0.13) (0.13) (0.19) (0.26) (0.26)

Country-year FE yes yes yes yes yes
spat.lagt−1,t−2 yes yes yes yes yes
temp.lagt−1,t−2 yes yes yes yes yes
Observations 48,524 48,524 33,756 33,756 33,756
R2 0.21 0.14 0.29 0.27 0.29

Note: †p<0.1; ∗p<0.05; ∗∗p<0.01. Standard errors are clustered on the district- and country-
year-level

Conclusion

This article introduces the SIDE data, a collection of 253 maps of local ethno-linguistic, religious,

and ethno-religious compositions in 47 low- and middle-income countries. SIDE improves on

existing data projects by providing estimates of local ethnic diversity, rather than encoding ethnic

settlement patterns in a binary manner. In applied research, this continuous representation of

ethnic geographies yields three tangible benefits: First, it facilitates the measurement of group-
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characteristics via spatial operations, as it explicitly takes into account variation in groups’ local

population shares. Second, it permits calculating the extent and nature of local ethnic diversity

for arbitrary spatial units. Third, the dataset’s raster format makes it particularly easy to

visualize.

Given these advantages, the SIDE data creates opportunities for expanding the discipline’s

understanding of the local dynamics of violence and other socio-economic phenomena. With

its high-resolution data for many countries, SIDE contributes significantly to the possibilities of

comparative cross-country research rooted in the micro-level. Potential applications of the new

data include analyses of the role of local ethnic identities for the occurrence of political violence,

as well as research on the effects of local ethnic compositions on (ethnic) party politics, ethnic

favoritism, and inter-ethnic trust. The data may also find applications in forecasting models of

political violence. For practitioners, SIDE may prove useful as a source of politically neutral

map material, for example to determine optimal sites for development programs.15

This article also introduces and evaluates spatial interpolation methodology as a tool for

transforming geo-referenced survey data into smooth maps. We demonstrate that by combining

very simple spatial interpolation models with a model tuning setup, we are able to produce

near-continuous estimates of ethnic geographies from point-like survey clusters with surprisingly

little error. We believe that this method has considerable potential beyond the scope of this ar-

ticle. Specifically, as geo-coded surveys are becoming increasingly common, spatial interpolation

methods provide a powerful toolbox for making the most out of this type of data.

Replication data

The dataset and R-code for the empirical analysis in this article, along with the Online appendix,

can be found at http://www.prio.org/jpr/datasets as well as https://icr.ethz.ch/data/

side. All analyses have been conducted using R 3.1.
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