

INTRODUCING GROWLAB:
A TOOLKIT FOR LAYERED AGENT-BASED MODELING

N.B. WEIDMANN,∗ ETH Zurich, Switzerland
L. GIRARDIN, ETH Zurich, Switzerland

ABSTRACT

In this paper we introduce GROWLab (Geographic Research on War Laboratory) – a
software toolbox to facilitate the modeling, simulation, analysis, and validation of
complex social processes, with a special focus on geographic aspects. The paper aims to
give a general, non-technical introduction to agent-based modeling with GROWLab. It
focuses especially on the toolkit’s support for model structure, i.e. the creation of
complex agent configurations and hierarchies. An important feature of GROWLab is that
it makes possible the integration of real-world empirical data collected with a GIS. More
specifically, GROWLab can automatically create model structures from GIS datasets.
This way, it is possible to run a model either on real or artificial geographies without
changing the underlying data structures. We also introduce GROWLab’s GeoModel, a
geopolitical template model which makes different geographic and non-geographic
datasets readily available to the modeler.

Keywords: Simulation toolkits, GIS, conflict process models, agent hierarchies

INTRODUCTION

As agent-based simulations are getting increasingly complex and sophisticated,
simulation toolkits have become indispensable for the social science research community.
Toolkits help the model designer to quickly setup, run and evaluate a model, without having to
write the complete code from scratch. There are various toolkits out there (North et al. 2006;
Parker 2001; Luke et al. 2004; Minar et al. 1996). However, these toolkits aim to be all-purpose
products and try to target the entire broad field of social simulation. There is of course nothing
wrong with creating an all-purpose toolkit. However, the fact that an all-purpose toolkit must
necessarily remain general in order to make it applicable to a wide range of models limits the
functionality offered to a particular subfield.

This paper reports on our efforts to create a simulation toolkit especially tailored to our
requirements in the modeling of geopolitical processes. While developing a series of agent-based
models in this field, we increasingly became aware of the shortcomings of general-purpose
toolkits. We were often in need for agent structures more complex than grid spaces or simple
networks. Also, as many of our models are increasingly relying on geographic data, we required
support for different GIS data formats. Since there were quite a number of requirements common
to all our models, it was natural to create a library including this functionality and in doing so
avoid code redundancy.

∗ Corresponding author address: Nils B. Weidmann, International Conflict Research, ETH Zurich, 8092 Zurich,

Switzerland; e-mail: weidmann@icr.gess.ethz.ch.

125

The result of these efforts is the “Geographic Research on War Laboratory” (GROWLab)

library which supports modeling in the field of geopolitics and conflict research. The features of
this toolkit might be useful to other disciplines as well, especially since it attempts to address
challenges not specific to our area as for example the representation of agent hierarchies, and the
integration of GIS data. In general however, the increased specificity of GROWLab as compared
to other toolkits is likely to be useful to a narrower range of models.

Put very generally, ABM toolkits assist the researcher in three broad tasks: (1) setting up

the model structure, (2) specifying the simulation dynamics and (3) collecting output. Model
structure support is the storage and retrieval of (often different types of) agents and the
representation of their relationships. Whereas model structure is about the static parts of the
model and their relationships, toolkits also support simulation dynamics: What are the actions in
the model, and when are they carried out? Here, the toolkit supports both scheduling within a
single run of the model, but also more advanced executions such as batch runs across different
parameter settings. Finally, toolkits usually provide considerable support when it comes to the
collection of information from the model. Information about the current state of affairs can either
be provided by graphical displays of the model space and dynamics charts, or can be collected as
numerical output in files. This paper introduces GROWLab concepts and features along the three
categories of model structure, simulation dynamics and output collection.

MODEL STRUCTURE

In many agent-based models agents live in a two-dimensional grid world. These
Object2DGrids (in RePast) have two major functions: They store the agents themselves, and they
define relations (such as neighborhood) between agents. Correspondingly, in GROWLab we
introduce two interfaces capturing the two tasks: A layer is any collection of alike agents, and a
topology is a set of relationships between them. In addition, in order to represent hierarchies of
agents, we introduce the configuration interface. The following paragraphs explain layers,
topologies and configurations in detail.

Layer

A layer is a container for a set of alike and atomic agents. Layers offer general
functionality to manage the agents contained in them, but can also be used to collect aggregate
data about the entire population. A layer itself does not know about the neighborhood relations of
its agents – instead, this is achieved by imposing one or more topologies on a layer.

Topology

A topology is always defined on a layer of agents and defines a set of neighborhood
relationships between them. In this sense, a topology is equivalent to a network. Based on the
connectivity between agents, it can compute the neighborhood set of a given agents as well as
their distance from each other.

126

Configuration

Whereas topologies can only exist between agents of the same kind, GROWLab offers
the possibility to connect agents of different types to yield agent hierarchies. This is done using
configurations, which typically connect agents from two layers – the parent layer and the child
layer, as we call it in GROWLab. Configurations exist in different forms. The most general one
is the many-to-many configuration, which allows the connection of a parent to many children,
but also of a child to many parents. A more restrictive configuration is the one-to-many type,
relating one parent to many children, but permits at most one parent per child. The one-to-one
configuration adds the final constraint of only allowing exactly one child per parent.

A GROWLab model structure created with these building blocks is automatically kept in
sync: For example, an agent removed from a layer is also removed from the topologies defined
on that layer. Figure 1 illustrates the three core interfaces with a simple example of states and
their provinces.

(1)
(2)

(3)

(1)

State 1

State 2

Figure 1: Illustration of the GROWLab
model structure building blocks: (1)
Layers are containers for agents. The
top layer holds two states, and the
bottom layer serves as a container for
province agents. (2) A topology defined
on the state layer keeps track of the
relations between states. (3) A
configuration stores the membership of
provinces in states.

Spaces and Mappings

In order to represent agents in a spatial environment, we distinguish between a space
which is an empty set of locations, and a mapping which takes care of the assignments of agents

127

to locations in this space. This flexible design allows us to put agents at more than one position
(e.g. states can occupy more than one province in a grid), or even to use one space for many
different mappings. For example, this is useful when representing the extent of states and ethnic
groups in the same geographic space: Only one space object is required, whose locations are then
linked in two mappings.

GROWLab provides different types of spaces. On the one hand, it supports abstract
spaces such as grids and hexagonal spaces. On the other hand, there is support for spaces with
and explicit geographic reference, for example a GIS rastered space. Here, a location not only
knows its x- and y-coordinates, but also its precise coordinates in latitude/longitude. Moreover,
geographic spaces can compute the geodesic distance between locations.

MODEL EXECUTION

buildModel() and step() methods

Model execution in GROWLab follows closely the procedure introduced by RePast. Each

model essentially needs to implement two methods: buildModel() and step(). The former is
executed when a model run is initialized. Its purpose is typically to create data structures and
agents required for this run. The latter is called at every time tick and contains the simulation
steps to be run repeatedly. An important difference to RePast is the implementation of the
simulation engine. In GROWLab, a simulator object takes care of initializing and running the
model. The advantage of this approach is that one can select a simulator according to one’s
needs: GROWLab offers simulators with different graphical and batch run features.

Parameters

All parameters required for a model must implemented using the parameter classes
offered by GROWLab. More precisely, a parameter is encapsulated in a special class that not
only allows the storage of the parameter’s value but also its name and description. All parameters
are registered when the model is constructed initially such that they can be used both in graphical
and non-graphical runs. Parameter classes exist for all kinds of numeric parameters, booleans,
strings and enumerations.

Batch Runs

As stated above, the simulation toolkit must also provide a facility for automatic
parameter sweeps, i.e. “batch runs” in RePast terminology. By automatically initializing and
running the model for different values of the input parameters, the researcher can collect
statistics about the behavior of the model under varying conditions. Batch runs rely on the set of
parameters as described above. Batch runs can also be performed in parallel to get the results
faster, both on multiprocessors machines and on distributed grid computers.

128

MODEL OUTPUT

Separating Visual and Batch Models

We encourage, and enforce to a certain extent, the developer to provide separate
implementations of the model for graphical and non-graphical output. Essentially, apart from the
basic Model interface specifying the buildModel() and step() methods, two extensions define
how visual models and batch models should look like. A visual model will have to implement
the buildUI() method where all graphical elements are set up. A batch model should provide
information about which parameter sweeps are to be executed. Of course, GROWLab simulators
tailored to either visual or batch runs will only be able to run the corresponding model. This
structure makes sure that the behavior of the model – regardless of the desired way of output –
remains the same.

Visualizing Model Structure

Model structure is displayed both as a graphical representation of model structures, like
agents in a space, and a textual output with a detailed list of information about agents. The latter
resembles the “probes” introduced by Swarm and still present in many other toolkits. For each of
the three core concepts layer, topology and configuration introduced above, GROWLab has a set
of predefined dynamic graphical visualizations for the inspection of the model. Layers can be
portrayed by a list of agents and their attributes. Neighborhood relationships of a topology can be
displayed graphically as a network structure, and textually as a paired list of connected partners.
The structure of a configuration can be examined as a tree table. A set of two-dimensional
graphical displays takes care of visualizing spatial layers and the agents contained in them.

Collecting Statistics from the Model

The way to extract statistics from a GROWLab model is done with the help of so-called
“collector” classes. This mechanism is very flexible and can be used both for visual and batch
models. Collectors are standardized data collection facilities storing the data in the format
required for the analysis. For example, in a batch run one will typically use file-based collectors
which simply output the assembled data to a file. For visual simulations, GROWLab offers
collectors which prepare the data for display in a chart. Similarly, we provide a collector
outputting a sequence of image files which can then be assembled to an animation of the
simulation. Collectors are registered in the simulator executing the simulation. It takes care of
activating the collector after each tick or at the end of a run.

Collectors get their data from variables within the model. However, as for the parameters
introduced above, variables are implemented using the wrapper classes offered by GROWLab.
Beyond the storage of a value these classes add meta-information about the variables such as
their name and description. Additionally, variables can also be computed on the fly.

129

The GROWLab User Interface

During the development of GROWLab, special emphasis was put on the design of the
graphical user interface. Our general approach is to have a GUI where multiple views on
different aspects of the simulation are closely linked together. At the present stage, the
GROWLab GUI features a set of interconnected views on the simulation, such as spatial views
which display the simulation space, configuration views which allow for agent hierarchies to be
displayed, and process views tracing the actions performed and the results produced in the model
over time. Figure 2 illustrates the GROWLab user interface with the different views. The views
are interconnected in such a way that selecting an agent in one view causes this agent to be
displayed in another view.

Figure 2: The different elements of the GROWLab user
interface: The spatial view (top right), the configuration view
(top left), and the process view (bottom). There can be more
than one view per type.

USING GEOGRAPHIC DATA IN GROWLAB MODELS

Using GIS Data for Agent-based Modeling

We can distinguish two ways of how GIS data can be used in modeling applications. The
first category of models takes the geographical input as a realistic landscape where the model
dynamics is then run on. The crucial feature of this approach is that typically the geographic data
remain constant throughout the model run. Examples include the creation of a realistic road
network to run traffic simulations. The second category of simulations is more complex. Here,
the geographic data is not kept constant but rather endogenous to the model. For example, in all
Geosim-like models state borders vary over time. In order to be able to represent these changes,
we need a data format which is able to accommodate time-variance in geographic features.

130

The models GROWLab is designed for typically belong to the second category. Whereas

in GIS vector data the degrees of freedom for changes are unlimited, in a raster-based
representation this complexity is significantly reduced. For example, a country represented as a
polygon can be modified by moving the polygon’s corners, or by adding or removing existing
corners. Obviously, the possible alterations are infinite which makes a vector format less well
applicable for simulations with an endogenous geography. On the other hand, we could represent
a country as a (mostly contiguous) set of raster cells. The tradeoff we incur is the lower
resolution and precision, but since the atomic spatial unit – the grid cell – is fixed, changes to the
shape of the country can be represented as a re-assignment of the spatial units to other states.

GIS and GROWLab data structures

GROWLab is able to read GIS data and to create its own data structures from it. The
development of a model with geographic reference typically starts with the definition of a
geographic space – a raster space with geographic reference. All spatial data added to the model
uses this space as a reference.

Raster data to be included in the model has to be provided at the same resolution as
defined in the underlying space. It is then up to the user to tell GROWLab which kind of data
structure it should create from a raster input file. For example, a raster of countries (where cell
values indicate the country a cell belongs to) is best represented as a one-to-many mapping of a
country object to locations in the space, in other words, an assignment of country objects to
locations where each country occupies more than one location. To give another example: When
representing ethnic groups and their location, we use a many-to-many mapping of groups to
locations. Obviously, a group can occupy many locations, but one location can also be shared
among different groups.

The data structures briefly described here enable the researcher to craft an agent-based
model with geographic reference according to one’s needs. However, if only some standard GIS
datasets are required, one can also rely on a readily implemented template model.

GeoModel: A Geopolitical Template Model

Based on the template model GeoModel, geo-coded real-world data can be integrated in

the modeling process. This template can be extended by inheriting the built-in functionality and
by adding some custom behaviors and mechanisms or complement it with additional layers of
data.

GeoModel’s default space is a rasterized representation of the entire globe, using the
WGS84 projection. The raster can be used in two different resolutions: 15 arc-minutes (~30km),
and 30 arc-minutes (~60km). All the geographic data is based on this space.

131

Figure 3: Geographic data contained in the GeoModel template: borders, ethnic groups,
population, spatial GDP, elevation and vegetation (left to right panel).

Figure 3 shows some of the information contained in the GeoModel template including
(1) country border and administrative divisions, (2) ethnic groups across countries, (3)
population density, (4) spatial GDP figures, (5) elevation data, and (6) vegetation type. For each
country, we provide their borders as of 1964 and 1994, and also try to reconcile their ISO, FIPS
and COW codes through customized mapping. To check adjacency of countries, the Minimum
Distance data from Gleditsch and Ward (2001) is also included to query for neighboring
countries that are separated by water. At this point, all ethnic groups are directly based on the
GREG definitions. For each ethnic group in a country, there is also information about the “ethnic
group in power” (EGIP) coding by Cederman and Girardin (2007).

In addition, we provide disaggregated data for every cell in the system for population
(downsampled from the Gridded Population of the World v. 3 provided by CIESIN (2005)) and
elevation (downsampled from GTOPO30 (2007)), as well as local GDP estimates, compiled by
the G-Econ project (at a 1-degree resolution) from Nordhaus (2006). They relieve the modeler
from the tedious task of having to collect and merge complicated datasets and thus provide a
prototyping environment for geographic agent-based models.

132

EXAMPLES IMPLEMENTED IN GROWLAB

GROWLab comes with some twenty models that serve as example that can be used as
template for developing new models, as test cases to verify the inner working of the simulator, as
well as stereotype models to evaluate the effectiveness of GROWLab architecture.

To give few examples, we use the iterated prisoner’s dilemma model (Cohen et al. 1998)
as an example for teaching purpose and to test GROWLab basic spaces (torus, grid, soup) and
neighborhood functions. Schelling’s segregation model (Schelling 1978) is used to showcase and
test moving agents. For more elaborated agent structures, we mainly rely on the Geosim model
(Cederman 1997) , which features hierarchical agents and moving state borders. To showcase the
GeoModel template model, we provide some statistical and exploratory models at the forefront
of research.

CONCLUSION

In this paper we presented our GROWLab simulation toolkit. With GROWLab, we tried
to improve the computational infrastructure for geopolitical models, especially with regard to the
use of geographic data. We feel that our approach of using native GROWLab data structures to
represent GIS data is promising, as it does not require the use of special GIS classes in the
model. This way, one can for example switch back and forth between an artificial space and a
space with geographic reference in the same model.

An issue which we have not yet taken into account is the incorporation of real time in the

model. Many GIS datasets are available with explicit temporal coordinates, as for example
ACLED (Raleigh and Hegre 2005). Further development of GROWLab will also focus on a
better support for different agent activation regimes: In our models, synchronous updating is
mostly the desired scheme, but in many cases it brings with it a lot of computational problems. A
toolkit could provide implementations of agent prototypes with built-in data structures for
synchronous activation.

ACKNOWLEDGEMENTS

The authors are grateful to Lucas Serpa Silva for research assistance. Nils Weidmann’s
work is supported by ETH (Research grant TH –4/05-3).

REFERENCES

Cederman, Lars-Erik. 1997. Emergent Actors in World Politics: How States and Nations
Develop and Dissolve. Princeton, NJ: Princeton University Press.

Cederman, Lars-Erik, and Luc Girardin. 2007. "Beyond Fractionalization: Mapping Ethnicity
onto Nationalist Insurgencies." American Political Science Review 101 (01):173-85.

Center for International Earth Science Information Network CIESIN, Columbia University; and
Centro Internacional de Agricultura Tropical CIAT. 2005. "Gridded Population of the
World v3 (GPWv3)." Available at http://sedac.ciesin.columbia.edu/gpw.

133

http://sedac.ciesin.columbia.edu/gpw

Cohen, Michael D, Rick L Riolo, and Robert Axelrod. 1998. "The Emergence of Social
Organization in the Prisoner's Dilemma: How Context-Preservation and Other Factors
Promote Cooperation." SFI Working Papers.

Gleditsch, Kristian Skrede, and Michael D Ward. 2001. "Measuring Space: A Minimum-
Distance Database and Applications to International Studies." Journal of Peace Research
38 (6).

Luke, Sean, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. 2004. MASON: A New
Multi-Agent Simulation Toolkit. Paper prepared for the SwarmFest Workshop.

Minar, N., C. Burkhart, C. Langton, and M. Askenazi. 1996. "The Swarm simulation system: a
toolkit for building multi-agent simulations." Santa Fe. SFI Working paper 96-06-042.

Nordhaus, William D. 2006. "Geography and macroeconomics: New data and new findings."
Proceedings of the National Academy of Sciences USA 103 (10):3510-7.

North, M. J., N. T. Collier, and J. R. Vos. 2006. "Experiences Creating Three Implementations of
the Repast Agent Modeling Toolkit." ACM Transactions on Modeling and Computer
Simulation 16 (1):1-25.

Parker, Miles T. 2001. "What is Ascape and Why Should You Care?" Journal of Artificial
Societies and Social Simulation 4 (1).

Raleigh, Clionadh, and Havard Hegre. 2005. Introducing ACLED: An Armed Conflict Location
and Event Dataset. Paper prepared for the Disaggregating the Study of Civil War and
Transnational Violence Conference, San Diego, CA.

Schelling, Thomas C. 1978. Micromotives and Macrobehavior. New York: Norton.
US Geological Survey. 2007. "GTOPO30 Digital Elevation Model." Available at

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html.

134

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

