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Abstract. We describe a spatially and temporally autoregressive discrete re-
gression model, detail and implement an algorithm for estimating the parameters
of such a model, following the framework of Geyer and Thompson (1992), as
recently updated by Zhu, Zheng, Carroll and Aukema (2008); Zhu, Rasmussen,
Møller, Aukema and Raffa (2008); Zheng and Zhu (2008). This model is applied
to geo-located data on attributes and conflict events in Bosnia over the period
from March 1992 through October 1995. We present an R program library to
estimate this class of models. Results show that there is a strong spatial as well
as temporal dimension to the outbreak of civil conflicts in Bosnia, dynamics in
space and time that standard OLS-type implementations completely miss. Using
this approach it is no longer necessary to assume that either the spatial or the
temporal dependencies in conflict data are exogenous in order to create predictive
and inferential models of civil conflicts. Substantively, we show via inference, sim-
ulation, and animations that conflict events in Bosnia did diffuse spatially as well
as temporally.

1. The Spatial-temporal Model

Discrete spatial temporal data characterize most models of conflict, both at
the international and domestic levels. The gold-standard approach in political sci-
ence appears to focus on the temporal dependencies in such data, at the expense of
the spatial dependence. In the fields of applied statistics, there are two general step-
ping off points for developing models of such data. One approach follows the model
based geo-statistics approach found in Diggle, Moyeed and Tawn (1998) and uses
a form of generalized linear mixed models to examine spatial dependencies among
geo-located events. The spatial-temporal component is modeled by a Gaussian pro-
cess that captures the dependencies via an autocorrelation function that embodies
both spatial and temporal lags.

A second approach follows from the breakthrough of Besag (1972, 1974) in
using a lattice based framework for a Markov Random Field, which models the dis-
crete outcome at one location conditional on the observed outcomes at neighboring
locations. This approach–known as autologistic regression–was widely employed for
decades by using a pseudo-likelihood approach (i.e., a normal logistic regression).
The autologistic approach is fairly straightforward. We detail it formally herein.
Let Yt = (Y1,t . . . YN,t)

′
represent whether there is a conflict on the observed spatial

arrangement of units at time t; Yi,t is the existence of conflict at location i at time t.
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By definition, Yi,t ∈ {0, 1}, 1 corresponding to the presence of conflict. Covariates
are given in Xk,i,t. If the dependent variable is governed by a Markov random field,
then conditional on the structure of the neighborhood N ,

Pr(Yi,t | Yj,t : j 6= i; j ∈ Ni; Yt′=t−1...t−S)

Since we have a binary, discrete response, a logistic formulation with a con-
ditional formulation that is governed by the Bernoulli distribution is used to model
the conditional probability of conflict, pi,t:

logit(pi,t) =
K∑
k=0

θkXk,i,t +
1

2

L∑
l=1

θK+l

∑
j∈Ni

Yj,t +
S∑
s=1

θK+L+sYi,t−s

where θK are the coefficients for the covariates, θK+L are the spatial autore-
gressive coefficients, and the remaining θK+L+S correspond to the temporal autore-
gressive components. By the Hammersley-Clifford Theorem1 the joint distribution
can be inferred from:

Pr(Yt | Yt′ : t
′
= t− 1 . . . t− S) = c(Yt−1 . . .Yt−S; θ)−1 ×

exp

{ I∑
i=1

K∑
k=0

θkXk,i,tYi,t +

1

2

I∑
i=1

L∑
l=1

θK+l

∑
j∈Ni

Yi,tYj,t +

I∑
i=1

S∑
s=1

θK+L+sYi,tYt,t−s

}
Unfortunately, c(Yt−1 . . .Yt−S; θ)−1 is a normalizing constant that doesn’t

have a closed form, and it is impossible for any real problem to evaluate it dy-
namically through an iterative estimation procedure such as MCMC or MLE. This
problem is typically resolved by using a strategy suggested by Geyer and Thompson
(1992) and used by Hoeting, Leecaster and Bowden (1999), Huffer and Wu (1998),
Gumpertz, Wu and Pye (2000), and Ward and Gleditsch (2002), among others. This
approach approximates a likelihood ratio as follows. Let Zt represent the expansion
of all the covariates, allowing a simpler statement of the log-likelihood function:

L(θ) = −
T∑

t=S+1

log c(Yt−1 . . .Yt−s; θ) +
T∑

t=S+1

θ
′
Zt

Consider a parameter vector ψ = (ψ0 . . . ψ
′
K+L+S), then the likelihood ratio

can be formed and results in the following

L(θ)− L(ψ) =
T∑

t=S+1

(θ − ψ)
′
Zt −

T∑
t=S+1

log
c(Yt−1 . . .Yt−S; θ)

c(Yt−1 . . .Yt−S;ψ)

1This establishes that a Markov Random Field can be characterized equivalently as a Gibbs dis-
tribution.
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The ratio of the two, unknown normalizing constants need not be evaluated

at every iteration but instead has the expectation Eψ
[

exp(θ
′
Zt)

exp(ψ′Zt)

]
.

A Monte Carlo estimator for this is given as

M−1

M∑
m=1

exp ((θ − ψ)
′
Zm
t )

with Zm
t evaluated at each of m = 1 . . .M Monte Carlo samples for Yt. A Gibbs

sampler defined by the full conditional distribution generates the Monte Carlo sam-
ples. At this point the likelihood can be maximized to obtain the MLE estimates of
parameters. Typically, pseudo-likelihood estimates are used to provide an estimate
of ψ, but other choices may be preferable in different scenarios.

In short, the estimation strategy is one that builds on the Geyer and Thomp-
son (1992) insight, and creates Monte Carlo samples using a Gibbs sampler. These
are then used to calculate the maximum likelihood estimates. This approach has
been widely employed, and serves as the basis for Ward and Gleditsch (2002), for ex-
ample. What is unique about this approach is that a temporal dimension has been
incorporated, simultaneously. The temporal dimension is necessary to look more
closely at the spread of events, their plausible contagion effects, and other aspects
of diffusion. However, this has been dealt with typically in the social sciences by
temporally lagging the spatial effects as a way of decontaminating the contempo-
raneous effects (Beck, Gleditsch and Beardsley, 2006). Beck et alia (2006) explore
this strategy for continuous variables. Allowing one to correctly specify both tem-
poral and contemporaneous spatial effects in discrete models improves our ability to
examine contagion and diffusion processes for events that may trigger other events,
which remains as one of the major hypotheses in the conflict literature (Buhaug and
Gleditsch, 2008).

2. Application: Conflict Diffusion in Bosnia

The war in Bosnia serves as an application of the spatial-temporal model to
the spread of conflict. We chose Bosnia because detailed conflict data is available
at both a high spatial and temporal resolution. The 109 pre-war municipalities
in Bosnia according the 1991 census (Petrovic, 1992) constitute the spatial units
of analysis for our study. The boundaries of these units were digitized as a GIS
shapefile, which allowed for the spatial aggregation of conflict events (see below).
Our study uses months as the temporal unit of analysis. We start with March 1992
as the first month of the war, and analyze events through October 1995. This results
in a sample of N = 4, 796 (109 municipalities × 44 months). In the following, we
describe the variables included in the model, and how they were computed.

2.1. Conflict. Data on conflict is taken from ACLED, the Armed Conflict Location
and Events Dataset (Raleigh and Hegre, 2005). ACLED lists all reported confronta-
tions between war participants along with their spatial coordinates. We aggregate
ACLED events by municipality and month: specifically, we code the conflict vari-
able as “1” if at least one ACLED event occurred in the respective unit and month,
and “0” otherwise. Of the 4, 796 cases, 301 are conflict cases (6.3%). Figure 1(a)
shows the conflict activity over time (aggregated by month over all municipalities).
Violence erupted in two waves, one starting at the beginning of the war, and the
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Figure 1. Number of conflict events per month, aggregated over all
municipalities (a) and over the entire duration of the war (b).

August 1992 September 1992 October 1992

Figure 2. Diffusion of conflict, plotted over a three-month period.

second one occurring in the last 10 months before the end of the war. Figure 1(b)
displays the spatial extent of violence, aggregated over the entire conflict. Conflict
activity appears to be clustered in space, with a lot of violence occurring around the
cities of Mostar (dark red, in the South) and Sarajevo. Also, border regions seem
to be particularly affected by conflict.

The above figures are only partially able to reveal the spatial-temporal pat-
terns of conflict in the data. Figure 2 shows the occurrence of conflict in three
subsequent months (August–October 1992). There is clear evidence of conflict clus-
tering: Take for example the municipalities in the northwest of the country. Starting
with a single affected unit in August 1992, conflict spreads to the adjacent municipal-
ities in the following months. A full spatial-temporal animation of the conflict data
can be obtained from our web site.2 Alternatively, the WarViews tool (Weidmann
and Kuse, 2009) can be used to time-animate conflict data from ACLED.

2See http://cederman.ethz.ch/~nilsw/bosnia/animation1.pdf. Note that only Adobe Reader
or Adobe Acrobat can play the animation. Start the sequence by clicking on the map.

http://cederman.ethz.ch/~nilsw/bosnia/animation1.pdf
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2.2. Population. More populous municipalities should see more conflict. We there-
fore include the logged number of people in a unit according to the 1991 census
(Petrovic, 1992) as a control variable. Municipality population varies from 4172
people (Lubinje) to 196186 (Banja Luka), with a mean of 40161. Note that Sara-
jevo is divided into multiple districts and therefore does not constitute the largest
municipality. We expect a positive effect of population on the likelihood of conflict.

2.3. Ethnic composition. Ethnic composition has been shown to be a significant
predictor of the location of violence (Weidmann, 2008). The war in Bosnia evolved
along hardened ethnic lines, and the local ethnic composition of a municipality
played a major role in making it more susceptible for violence. The 1991 Yugoslav
census assigned people to different ethnic groups (Bosniaks, Serbs and Croats) and
therefore can be used to calculate an index of ethnic fractionalization according to
the frequently used Herfindahl concentration formula (Taylor and Hudson, 1972).
In our sample, the index ranges from 0.001 to 0.66, with a mean of 0.42. We assume
that higher values of ethnic fractionalization should be related to higher conflict
susceptibility and therefore expect a positive effect.

2.4. Border locations. In the visual inspection of the conflict data presented
above, it seems that border locations are particularly affected by violence. In fact,
the Serb and Croat military forces moved in across the eastern and northern borders
of Bosnia, which should put the border municipalities at a higher risk of conflict.
We therefore include a dummy variable that takes the value of “1” for each of the
34 border municipalities.

2.5. Elevation. The literature on civil war has argued that mountainous regions
should be more prone for conflict, since rebels can hide from government forces
(Fearon and Laitin, 2003). A similar logic might apply in the Bosnian case. It
will be more difficult to gain control over mountainous regions, since the opponent
can more easily escape defeat. We include a measure of the average elevation of
a municipality and expect a positive effect on conflict risk. Territorial elevation
values are taken from the GTOPO30 dataset (US Geological Survey, 2007) are were
aggregated to the municipality level using GIS software. The resulting variable
ranges from 82.62 to 1283.69, with a mean of 647.92.

3. Estimation Results

We compare the MCMC estimation results obtained with our streg package
(see Appendix A) to the ones obtained using maximum pseudo-likelihood (MPL)
estimation. For the MCMC estimation, we used 11,000 Gibbs sampling iterations
with a burnin period of 1000. In both models, we use temporal lags up to the second
order. Table 1 reports the results.

We see that the effects of the variables on conflict risk are largely as expected:
More populous units face a higher risk of conflict, and so do ethnically diverse units.
Proximity to the country border increases the likelihood of violence. Conflict is also
more likely in mountainous terrain. The results show the strong spatial and temporal
dependence in the data. The spatial lag gets a positive and strongly significant
coefficient. In other words, the occurrence of violence in a municipality spurs violence
nearby – this confirms our visual impression from the conflict data presented above.
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MPL estimation MCMC estimation

ψ̂ σψ̂ θ̂ σθ̂

(Intercept) -12.0819 1.2953 -11.8398 1.2504
Population 1.5725 0.2674 1.5051 0.2556
ELF 1.1800 0.5572 1.1118 0.5224
Border 0.5704 0.1707 0.6657 0.1646
Mountains 0.0008 0.0003 0.0009 0.0002
Conflict (Spatial lag) 0.8074 0.0761 0.8341 0.0779
Conflict (t-1) 1.9605 0.1669 2.0052 0.1580
Conflict (t-2) 0.7210 0.1884 0.8064 0.1772

Table 1. Results for Pseudo-likelihood and MCMC estimation.

Also, violence displays a strong temporal dependence, which becomes visible in the
positive and significant time lags.

Comparing the results from the MPL and MCMC estimations, we note that
the differences are not large. As reported in Ward and Gleditsch (2002), we find
that the coefficients estimated by MPL are close to those obtained with the MCMC
model. Also in line with Ward and Gleditsch’s findings, we see that the standard
errors estimated by MCMC tend to be smaller, even though in our application this
does not alter the substantive conclusions. In the past, due to the comparably high
computational complexity of the MCMC procedure, researchers have often resorted
to fast MPL estimation. However, the introduction of our streg package makes
it possible to get MLE estimates quickly.3 In essence, whether MCMC estimates
differ from MPL estimates depends on the respective application, and we cannot
tell unless we use both estimation methods. Our package enables researchers to use
the appropriate estimation for spatially dependent outcomes and obtain results fast.

4. Evaluating the Predictions of the Model

This section describes our efforts to evaluate the predictive accuracy of the
spatial-temporal model. We use the model specification with two time lags presented
above. As a result of omitting the first two months in the dataset, we end up with
42 months. Predicting a rare event as in our case (273 positive cases out of 4, 578)
is a difficult undertaking, especially since our covariates do not display variation
over time. Instead, the spatial and temporal lags in our model will carry the major
burden of predicting the temporal variation of conflict. The predictions we report
here are in-sample predictions, since the model was built on the full set of data.

4.1. Predictions Based on the Observed Conflict Outcomes. We start by
examining the predicted values of the model based on the observed values for both
the spatial and temporal lags. More precisely, we compute the predicted probability
p̂i,t of unit i at time t as

p̂i,t = logit−1

(
K∑
k=0

θ̂kXk,i,t + θ̂K+1

∑
j∈Ni

Yj,t +
2∑
s=1

θ̂K+1+sYi,t−s

)
3The above presented model took about a minute to run on an Intel Core Duo 1.6 GHz CPU.
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with observed values Yj,t. The predicted probabilities we obtain are generally fairly
small. Figure 3 shows a plot of their density. Based on the inspection of the figure,
we use a cutoff value of 0.2 for positive classifications. The complete truth table is
shown below (Table 2).
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Figure 3. Density of the predicted conflict probabilities.

Observed 0 Observed 1

Predicted 0 4118 155
Predicted 1 186 119

Table 2. Truth table for the predictions generated with the spatial-
temporal model. Threshold for positive classifications: 0.2.

Note that the procedure presented above is not an accurate assessment of the
model predictions due to the simultaneity of the observations across space. Below,
we present results obtained using the approach described in Ward and Gleditsch
(2002). Essentially, the idea is to use the estimated θ̂ of the MCMC model to
generate predicted probabilities of conflict by means of simulation. Rather than
using the observed conflict outcomes as spatial lags during the simulation, we update
the predicted value of a municipality based on the simulated values of its neighbors.
To initialize the simulation, we use the observed conflict outcomes as starting values
and update each of the municipalities 100 times in a random sequence. During
the simulation, we assign a simulated conflict value of “1” to a unit if the computed
conflict probability exceeds 0.2. The final conflict predictions are the values obtained
after the number of simulation iterations.

Whereas the problem of simultaneity can be resolved using the simulation
approach described in Ward and Gleditsch (2002), for the spatial-temporal model, we
also have to deal with the time dimension. Basically, when computing the predicted
probability p̂i,t of unit i at time t, we can use either the observed temporal lags, or
the simulated ones obtained for the previous time steps. We describe each of the
two approaches below.
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4.2. Predictions Using the Observed Conflict History. Our first simulation
approach uses the observed temporal lags of the dependent variable, but the simu-
lated spatial lags. More formally, we compute the predicted probability p̂i,t as

p̂i,t = logit−1

(
K∑
k=0

θ̂kXk,i,t + θ̂K+1

∑
j∈Ni

Ỹj,t +
2∑
s=1

θ̂K+1+sYi,t−s

)
where Ỹi,t denotes the simulated conflict value obtained for the same time

step. Compared to the classifications we received when using observed values for
both the spatial and temporal lags (see Table 2 above), the predictive accuracy of
the model improves considerably. However, the precision of the predictions suffers.
Out of 441 cases classified as positive, slightly less than half (141) are real conflict
cases (see Table 3).

Observed 0 Observed 1
Predicted 0 4004 133
Predicted 1 300 141

Table 3. Truth table for the predictions generated using simulation
with observed temporal lags.

Whereas the above truth table displays aggregate statistics over the entire
study period, it is interesting to trace the predictive accuracy as it develops over
time. Figure 4(a) plots the numbers of true and predicted conflict cases. Red and
grey colors indicate true conflict and non-conflict cases, respectively. Dark colors
show the number of correct classifications. We see that there is almost no variation
of the accuracy of classification over time: the number of correctly predicted conflict
cases remains low throughout the entire study period.

4.3. Predictions Using the Simulated Conflict History. We conduct are more
difficult prediction task using simulated values for both the spatial and temporal lag.
Essentially, the predicted values are computed according to

p̂i,t = logit−1

(
K∑
k=0

θ̂kXk,i,t + θ̂K+1

∑
j∈Ni

Ỹj,t +
2∑
s=1

θ̂K+1+sỸi,t−s

)
where Ỹi,t denotes again the simulated conflict value of unit i at time t. We expect
this approach to yield worse results than the previous one, since wrong classifications
will propagate through the system over time, whereas in the previous approach, they
could not due to the use of the real conflict outcomes for the temporal lags. As
expected, the results are worse compared to the previous simulation. We are able to
identify 207 conflict cases correctly, but at the same time, we wrongly classify 2025
cases as positive.

Figure 4(b) shows again a visual illustration of the results. Because of the
temporal propagation of error, we would expect the predictive performance to worsen
as the simulation evolves over time. Indeed, there seems to be decrease in the
correctly predicted positive instances over time, albeit a weak one.
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Figure 4. Classification results for the simulated predictions, for
each of the 42 months (along the x-axis). Dark and light red: true
conflict cases. Dark and light grey: true non-conflict cases. The dark
colors indicate the correctly classified instances.

Observed 0 Observed 1

Predicted 0 2279 67
Predicted 1 2025 207

Table 4. Truth table for the predictions generated using simulation
with simulated temporal lags.

5. Conclusion

In this paper, we have presented an attempt add a time dimension spatial
regression models of conflict. To this end, we developed a spatial-temporal regression
model following recent work (Zhu, Zheng, Carroll and Aukema, 2008) and applied
it to the diffusion of conflict during the Bosnia War, using monthly conflict data
at the level of municipalities. The results show that conflict displays both a strong
spatial and temporal dependence. These results were obtained using our streg

package for R that facilitates the estimation of spatial-temporal regression models.
This package is currently at the development stage, but will later be extended to
allow for the estimation of different spatial-temporal regression models and their
predictive evaluation.

We provided an extensive assessment of the model’s predictive performance,
with mixed results. Using simulation to incorporate the simultaneity of conflict
observations over space, we derived conflict predictions and compared them to the
observed outcomes. The challenge during these simulations is the inclusion of the
time component. Ideally, we want to initialize the simulation with a given set of
cases and then project its predictions both across space and time. We began this
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effort in our second simulation exercise, but different projection methods are under
development. Obviously, this approach is difficult, since prediction errors made
early in the process will propagate through the entire history of the simulation.
We presented another simulation approach that inhibits the temporal propagation
of error by relying on the observed conflict history of a unit when computing the
conflict prediction. In general, however, to further evaluate the model, we need to
do out-of-sample prediction within the context of a simulation that is based on the
MCMC samples generated from the full conditionals.

Appendix A. R-package streg for Space-Time Autologistic Models

The streg package provides an implementation of Zhu et al.’s spatial-temporal
regression model (Zhu, Zheng, Carroll and Aukema, 2008). Whereas it is possible
to implement the model estimation directly in the R statistical package, in doing so
one would incur significant performance costs. The reason is that R is optimized for
computation on vectors of data. Repeated retrievals of individual records from the
data matrix – just as we do when running the Gibbs sampler – is not very efficient
and leads to very long execution times of the algorithm.

For that reason, we chose to implement the model estimation in the Java
programming language. In contrast to other programs written e.g. in C or C++,
Java programs can be executed under almost any operating system, which prevents
the developer from having to distribute a particular piece of software for different
operating systems. Using the rJava package4 for R, we interface from R to Java.
The basic input checking is done in R, and if successful, the data are sent to a
newly created Java object. Once the computation is done, the R system retrieves
the results and formats the output. Currently, the package only offers the stlogit

command described below. However, we are planning to expand the package’s func-
tionality to incorporate spatial-temporal models for alternative dependent variables.
The syntax of the stlogit command is as follows:

> stlogit(model, data, unitvar, timevar, numtimelags, weights,

iterations, burnin)

• model: the specification of the regression model in standard R syntax, with
spatial and temporal lags omitted, as they will be automatically computed
by the package.
• data: the data frame
• unitvar, timevar: Unique identifiers for the spatial units and the time

periods.
• numtimelags: The desired number of time lags. Currently, the model always

computes spatial lags of order 1.
• weights: The weights matrix.
• iterations: The total number of Gibbs iterations (including the burnin

period).
• burnin: The number of burn-in periods.

4see http://www.rforge.net/rJava/

http://www.rforge.net/rJava/
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